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On the basis of the stationary phase principle, we construct a family of shaping nondiffracting structured caustic beams
with the desired morphology. First, the analytical formula of a nondiffracting astroid caustic is derived theoretically using
the stationary phase method. Then, several types of typical desired caustics with different shapes are numerically simu-
lated using the obtained formulas. Hence, the key optical structure and propagation characteristics of nondiffracting caus-
tic beams are investigated. Finally, a designed phase plate and an axicon are used to generate the target light field. The
experimental results confirm the theoretical prediction. Compared with the classical method, the introduced method for
generating nondiffracting caustic beams is high in light-energy utilization; hence, it is expected to be applied conveniently to
scientific experiments.
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1. Introduction

In contrast with classical optics theory, catastrophe optics theory
is primarily introduced to describe and reveal other unorthodox
optical phenomena that are changed abruptly by optical inten-
sity. It is called a “catastrophe” because optical bifurcation and
singularity are typically accompanied by a dramatic change in
optics. The theory of catastrophe optics is an important comple-
ment to classical optics theory[1]. Catastrophes naturally occur
in generic topologies in a wide range of systems[2,3]. Optical
caustics are concrete manifestations of catastrophe theory.
When light is focused such that rays intersect and coalesce by
refracting or reflecting in rough and unevenmedia, it forms focal
lines or surfaces called caustics, which are an envelope of light
rays that are typically accompanied by an abrupt increase in con-
centrated intensity. Some catastrophe optics morphologies of
caustics and their diffraction patterns have been theoretically
researched by some researchers[4–6].
In daily life, optical caustics are naturally focused because

their wavefronts are perturbed by random inhomogeneities.
For example, people can see natural optical caustics, such as sun-
light refracted or reflected on a wavy water surface, which occur
as bright lines of high intensity on the floor of shallow water and
the bottom of a bridge[7,8]. Apparently, natural caustic light is
flickering and its caustics structure is unstable. Hence, con-
structing stable caustics beyond those that occur naturally is par-
ticularly important for some research fields. In the pioneering
work of Thom[1], Whitney[9], and Arnold[10], stable caustics

in physics exhibit an isomorphic relationship with the elemen-
tary topological structures of catastrophe theory. In accordance
with Thom’s catastrophe theory, structurally stable caustics can
be classified into seven standard forms: folds, cusps, swallow-
tails, butterflies, and elliptical, hyperbolic, and parabolic umbili-
cus mutations[6,11,12]. Notably, some famous structured lights
can be understood in terms of caustics. For example, the well-
known Airy[13,14] and Pearcey[15] beams are simply standard
classification caustics, i.e., “fold” and “cusp” catastrophes[4,5].
Subsequently, the optical caustics concept is also used to
customize and shape other structured beams, such as self-
accelerating beams[16–18], self-accelerating surface plasmon
beams[19–22], Mathieu beams[23,24], and other caustic
beams[25–27]. Constructing caustic beams with a stable structure
has become a popular research topic because of the novel spatial
light-field distribution, unique optical properties, and practical
application values of such beams[28,29].
Different scientific experiments require various shaping

nondiffracting structured beams. The limited number of caustic
beams available at present restricts their applications.
Apparently, the design of new caustic beams with a prescribed
caustics is an important and challenging task. On the basis of the
inherent connection between optical wavefront and natural
caustics focusing, some researchers have constructed complex
structured beams by applying catastrophe theory. However,
such structured beams are not propagation-invariant beams,
i.e., they are not nondiffracting beams[7,13,30]. In 2020,
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Zannotti et al. generated several types of nondiffracting caustic
beams with a customizable intensity profile[31]. In their work,
the nature of the method they used to generate caustic beams
was Fourier transform. Hence, they must produce a transverse
Fourier spectrum of the wavefield limited to the ring. In the work
of Zannotti, the utilization rate of light energy was particularly
low during the generation of nondiffracting caustic beams. In
this study, in order to avoid using circular slits to generate caus-
tic beams, since it greatly limits the utilization of light energy[31],
we introduce a stationary phase method for generating nondif-
fracting beams along the desired caustic. Consequently, a series
of caustic beams is generated using a phase plate and an axicon.
Compared with that in Ref. [31], the introducedmethod for gen-
erating caustic beams considerably improves the utilization rate
of light energy.

2. Theory

Understanding the caustics concept requires the aid of physical
optics and the simpler ray model of geometrical optics.
Catastrophe optics can link geometrical optics with wave optics.
Geometrical optics can readily define the topology of a caustic
through the envelope of a family of rays, while wave optics
can reveal the diffraction pattern and correctly quantify its
intensity[5]. Apparently, the intensity maxima follow the shapes
of the caustic lines, which are the singularities of gradient maps
from the optical wavefront. Notably, the wavefronts described
here are the curved reflecting surfaces perpendicular to the opti-
cal rays of geometrical optics. Hence, the optical wavefront is
also called the “geometrical optics wavefront”[5]. The relation
between caustic shape and geometrical optics wavefront is given
by the following expression[31]:

rc�φ� =
1
k⊥

�Φ 0 0�φ�μ�φ� −Φ 0�φ�μ 0�φ��, (1)

where rc�φ� = �x, y� is a parameterized caustic shape, μ�φ� =
�cos φ, sin φ� is a unit vector, and k⊥ is a transverse wavenum-
ber. To generate the desired caustic with a given parameterized
rc�φ�, the geometrical wavefront shaping (i.e., physical phase
function) Φ must be calculated by solving Eq. (1). When the
phenomenon of caustics is described, the concepts of geometri-
cal and wave optics must work together.
As typical caustic beams, we first derive the phase function of

an astroid caustic. The expression of the astroid curve[7] can be
written as

rc�φ� =
1
k⊥

� �3q − 2q sin2 φ� sin φ
�3q − 2q cos2 φ� cos φ

�
: (2)

By substituting Eq. (2) into Eq. (1) and then solving the differ-
ential equation for the parameterized astroid curve, the follow-
ing equation can be obtained:

Φ�φ� = −
q
2
sin�2φ�, (3)

where q is an integral number that determines the geometrical
wavefront or physical phase function of an astroid caustic. In an
experiment, the corresponding physical phase of the geometrical
wavefront can be produced.
In our scheme, the obtained wavefront shaping Φ is used to

generate nondiffracting structured caustic beams on the basis of
the stationary phase principle. The propagation of a modulated
beam in free space can be described by Fresnel diffraction. The
Fresnel diffraction integral in cylindrical coordinates is

U�ρ, θ, z� = −i
λz

exp�ikz�
Z

∞

0

Z
2π

0
U0�r,φ� exp

�
ik
2z

�r2 � ρ2�
�

× exp

�
−
ik
z
ρr cos�φ − θ�

�
rdrdφ, (4)

where λ is the wavelength of the light beam, k = 2π=λ is the
wavenumber, U�ρ, θ, z� represents the complex amplitude dis-
tribution of the light field in free space, ρ and θ are the radial
distance and azimuth angle of the beam in free space, respec-
tively, z is the axial propagation distance, and U0�r,φ� is the
complex amplitude distribution of the initial light field (z = 0)
modulated by phase elements. In our scheme, an axicon phase
is necessary to generate nondiffracting structured caustic beams
on the basis of the stationary phase principle. The collimated
parallel light is successively incident to a phase plate and the axi-
con. Hence, the initial optical field can be written as

U0�r,φ� = A�φ�T�r�, (5)

where A�φ� = exp�iΦ�φ�� is the transmission function of the
phase plate, and T�r� is the complex amplitude transform func-
tion of the axicon[32]. The radial phase distribution of the axicon
is

T�r� =
�
exp�−ik�n0 − 1�θ0r�, r ≤ R,
0, r ≥ R,

(6)

where n0 is the refractive index of the axicon, θ0 is the base angle
of the axicon, which is typically a small angle, and R is the aper-
ture radius of the entrance pupil.
By substituting Eq. (6) and A�φ� = exp�iΦ�φ�� into Eq. (5)

and then substituting the resulting expression into Eq. (4), the
following equation can be obtained:

U�ρ, θ, z� = −i
λz

exp�ikz� exp
�
ik
2z

ρ2
�

×
Z

R

0
rdr exp�−ik�n0 − 1�θ0r� exp

�
ik
2z

r2
�

×
Z

2π

0
dφ exp�iΦ�φ�� exp

�
−
ik
z
ρr cos�φ − θ�

�
: (7)

In deriving Eq. (7), the following Jacobi–Anger expansion
should be used[33]:
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exp�iz cos θ� =
X∞

m=−∞
�i�mJm�z� exp�imθ�, (8)

where Jm is the mth-order Bessel function of the first kind. On
the basis of Eq. (8), the following expression can be obtained:

exp

�
−
ik
z
ρr cos�φ − θ�

�
=

X∞
m=−∞

�−i�mJm
�
k
z
ρr

�

× exp�−im�φ − θ��: (9)

By substituting Eq. (9) into Eq. (7), the following equation can
be obtained:

U�ρ, θ, z�

=
−i
λz

exp�ikz� exp
�
ik
2z

ρ2
�

×
X∞

m=−∞
�−i�m exp�imθ�

Z
2π

0
dφ expfi�Φ�φ� −mφ�g

×
Z

R

0
rdrJm

�
k
z
ρr

�
exp

�
ik

�
r2

2z
− �n0 − 1�θ0r

��
: (10)

Because Eq. (10) is double integrals, its analytic result is dif-
ficult to obtain directly. The stationary phase principle is a
method for simplifying the oscillatory integral that is difficult to
solve directly with the form ∫ g�r� exp�ikf �r��drwhen k → ∞[34].
For Eq. (10), we set f �r� = �r2=�2z� − �n0 − 1�θ0r� and g�r�=
Jm�kρr=z�r. On the basis of f 0�r�jr=r0 = r0=z − �n0 − 1�θ0 = 0,
the stationary phase point can be obtained when r0=
�n0 − 1�θ0z.When r = r0 ∈ �0,R�, themaximumnondiffracting
distance zmax = R=��n0 − 1�θ0� is obtained. The distribution of
the optical field at 0 < z < zmax is

U�ρ, θ, z� ≈ −ikr
�����
λz

p

λk
exp�ikz� exp

�
ik
2z

ρ2
�

× exp

�
i

�
−k�n0 − 1�2θ20z

2
� π

4

��

×
X∞

m=−∞
�−i�mJm�krρ� exp�imθ�

×
Z

2π

0
dφ expfi�Φ�φ� −mφ�g, (11)

where kr = k�n0 − 1�θ0. Equation (11) shows that various caus-
tic shapes can be achieved by substituting the corresponding
phase function Φ. By substituting Eq. (3) into Eq. (11), the
following equation can be obtained:

U�ρ, θ, z� = −ikr
�����
λz

p

λk
exp�ikz� exp

�
ik
2z

ρ2
�

× exp

�
i

�
−k�n0 − 1�2θ20z

2
� π

4

��

×
X∞

m=−∞
�−i�mJm�krρ� exp�imθ�

×
Z

2π

0
dφ exp

�
i

�
−
q
2
sin�2φ� −mφ

��
: (12)

To solve Eq. (12), the following expression should be used[35]:

Z
π

0
dφ exp�2imφ� ib sin�2φ�� = π�−1�mJm�b�: (13)

Hence, the integral part of Eq. (12) can be written as

Z
2π

0
dφ exp

�
i

�
−
q
2
sin�2φ� −mφ

��

= π�1� exp�−imπ�� × �−1�−m2 J−m
2

�
−
q
2

�
: (14)

We make the substitution m = 2n (n is an integer) in the fol-
lowing derivation process. By substituting Eq. (14) into Eq. (12),
we obtain the complex amplitude expression of the astroid
caustic,

U�ρ, θ, z� = −ikr
�����
λz

p

2
exp�ikz� exp

�
ik
2z

ρ2
�

× exp

�
i

�
−k�n0 − 1�2θ20z

2
� π

4

��

×
X∞
n=−∞

J2n�krρ� exp�2inθ�

×
h
1� exp�−2inπ�

i
J−n

�
−
q
2

�
: (15)

The intensity distribution of the astroid caustic is

I�ρ, θ, z� = U�ρ, θ, z�U� �ρ, θ, z�, �16�

where � denotes a complex conjugate. From the sum expression
given in Eq. (15), one readily knows that the radial wavenumber
of each order Bessel function is independent of the propagating
distance z. In addition, all Bessel functions have the same trans-
verse wavenumbers. Apparently, a superposition of nondiffract-
ing beams with the same transverse wavenumbers still is the
nondiffracting beam[36]. Equation (15) guarantees that this
caustic structure is invariant in z, i.e., it is a nondiffracting struc-
tured caustic beam. To our knowledge, we obtained the analyti-
cal expression of an astroid caustic for the first time.
In general, we set q = 10 for Φ�φ� = −q=2 sin�2φ�, and then

simulate the intensity distribution of the astroid caustic. The
parameterized curve is shown in Fig. 1(a1). Figure 1(a2) is the
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simulated phasemap, which ismappedmod 2π. The phase func-
tion determines the properties of the astroid caustic. Using the
framework of geometrical optics, the caustic lines of the beams
are depicted in Fig. 1(a3). These optical rays intersect and coa-
lesce; hence, they form focal lines or surfaces, called caustics,
which are the envelope of rays. On the basis of Eq. (16), the
numerical transverse intensity is simulated, as shown in
Fig. 1(a4). The optical structure, shown in Fig. 1(a4), is defined
by the rays and caustics and shapes the diffraction patterns of the
phase map shown in Fig. 1(a2). Comparing Fig. 1(a4) and Fig. 2
in Ref. [31], the transverse maps of the two astroid caustics are
the same. The diffraction pattern of the astroid caustic is

concentrated around the desired caustic. Such results confirm
that the stationary phase principle can be used to generate shap-
ing nondiffracting structured caustic beams. Figure 1(a4) illus-
trates that the diffraction pattern of caustic beams exhibits the
structure of high-intensity borders and four cusp points.
Different caustics can be accompanied by varying characteristic
diffraction patterns. Figures 1(b)–1(d) present the correspond-
ing transverse light patterns for deltoid, cardioid, and pentagram
caustics, respectively. The beam’s intensity maxima are localized
within the cusp-shaped regions of these caustics. Their corre-
sponding curve parametric expressions are provided in
Table 1. Figure 1 shows that the concepts of geometrical and

Fig. 1. Shaping nondiffracting structured caustic beams. (a) Astroid; (b) deltoid; (c) cardioid; (d) pentagram caustics. (a1)–(d1) Caustic lines; (a2)–(d2) phase
distributions; (a3)–(d3) ray pictures; (a4)–(d4) simulated transverse intensities of the astroid, deltoid, cardioid, and pentagram caustics, respectively.

Fig. 2. Theoretical simulations of astroid caustic with different q. (a) q = 0; (b) q = 5; (c) q = 10; (d) q = 15.
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wave optics work excellently when they are used to describe the
phenomenon of caustics. Our scheme can be potentially
extended to design other caustics-related beams[37].
On the basis of Eq. (15), we typically simulate the intensity of

several types of astroid caustic with different q, as shown in
Fig. 2. Figure 2 shows that the size of the astroid caustic increases
with increasing the value of q. For the case of q = 0, the astroid
caustic is degenerated into classical zero-order Bessel beams[38].
Hence, the zero-order Bessel beams can also be regarded as the
special case of astroid caustic for q = 0. In the substitution of the
phase function Φ�φ� = lφ (l is an integral) into Eq. (11), the
classical Bessel beams with a spiral wavefront and carrying
orbital angularmomentum can be generated. The parameterized
Bessel caustic, as rc = −l=k⊥u 0�φ�, is a ring.

3. Experiment

To produce the shaping nondiffracting structured caustic
beams, we construct an experimental system based on the sta-
tionary phase principle, as shown in Fig. 3. An He–Ne laser is
extended and successively incident on the phase plate and the

axicon. The phase plates shown in Figs. 1(a2)–1(d2) are
machined using a laser direct-writing system. Moreover, in
the optical path, two polarizers are added to improve the quality
of the generated caustic beams. Notably, in our experimental
system, the light field did not pass through the narrow annular
pupils given in Ref. [31]. The light field modulated by the phase
element is incident on the surface of the axicon. Thus, the uti-
lization of the effective light source area is increased, and the uti-
lization rate of the light energy is improved. After the axicon, the
modulated beam is diffracted; hence, the desired caustic beams
are generated. In general, transverse caustics are recorded at
80 cm after the axicon, as shown in Figs. 4 and 5. We separately
record the experimental diffraction patterns for astroid, deltoid,
cardioid, and pentagram caustics. The experimental results are
highly consistent with the simulation results of caustic beams.
These results indicate the feasibility of our scheme in generating
nondiffracting caustic beams with any required high-intensity
curve in the transverse profile of the light field.
In accordance with the optical parameters of the experimental

system, the fact that the maximum nondiffraction propagating
distance of the generated caustic is zmax = 1083mm can be
readily known. To verify the transmission characteristics of
the generated astroid caustic within the range of z < zmax, we
simulate the astroid caustic in different propagation distances
and record the intensity distribution in the corresponding
propagation distances after the axicon, as shown in Fig. 6.
This figure illustrates that the main structure of the beams is
steady, and the optical intensity distribution of the astroid caus-
tic is shape-preserved during propagation, although the optical
intensity of the beams slowly increases during propagation.
Hence the generated caustic beams on the basis of the stationary
phase principle can be regarded as nondiffracting beams, similar
to nondiffracting Bessel beams generated using an axicon. The
optical lattice is an artificial light structure that is widely used in
various branches of science, such as in trapping ultracold atomic

Table 1. Parametric Expressions for Different Curves.

Type of Curve x (φ) y (φ)

Deltoid 1/k⊥ [−9q cos(3φ)cos(φ)−3q sin(3φ)sin(φ)] 1/k⊥ [−9q cos(3φ)sin(φ)+3q sin(3φ)cos(φ)]

Cardioid 1/k⊥ [2q cos(φ)−q cos(2φ)] 1/k⊥ [2q sin(φ)−q sin(2φ)]

Pentagram 1/k⊥ [−25 q sin (5φ) cos (φ) + 5q cos ( 5 φ) sin (φ)] 1/k⊥ [−25q sin (5φ) sin (φ)−5 q cos (5φ) cos (φ)]

Fig. 3. Experimental system of generating caustic beams.

Fig. 4. Experimental recorded graphs of nondiffracting caustic beams with the same parameters as that in Fig. 1.
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gases[39–41] and in quantum computation[42]. In Ref. [43],
Rechtsman reported that 2D caustic light with lattice features
and well-defined curve boundaries could fabricate novel topo-
logical photonic structures. Apparently, our introduced high-
efficiency method for generating nondiffracting structured
caustic beams is expected to be applied conveniently to some
potential landscapes.

4. Conclusion

We provide the first and novel generating mechanism of non-
diffracting caustic beams on the basis of the stationary phase
principle. Here, we obtain the analytic expression of astroid
caustic beams for the first time on the basis of the stationary
phase principle. Then, astroid, deltoid, cardioid, and pentagram
caustic beams are experimentally observed. The experimental
results agree well with the numerical simulation, demonstrating
that the stationary phase principle is an effective method for
producing the desired shaping nondiffracting structured caustic
beams. Compared with the classical method of generating
caustic beams using the Fourier transform method, the station-
ary phase method considerably improves the utilization effi-
ciency of light energy. Apparently, we demonstrate a powerful
approach for the high-efficiency generation of various desired
nondiffracting caustic beams with customizable intensity
profiles.
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